Robotics: An Introduction

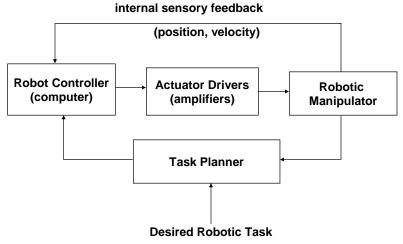
Marcelo H Ang Jr mpeangh@nus.edu.sg Dept of Mechanical Engineering National University of Singapore

© Marcelo H. Ang Jr., Aug 06

Definition

- A Robot is a Programmable, multi-function manipulator designed to move materials, parts, tools or specialized devices through variable programmed motions for the performance of a variety of tasks.
- · Key points:
 - machine
 - repeated tasks
 - programmability
 - intelligence (e.g., decision making capabilities)
 - articulated motion
 - adapt to environment
 - senses the environment

© Marcelo H. Ang Jr., Aug 06


What is the ultimate robot?

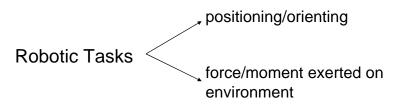
A Humanoid!

© Marcelo H. Ang Jr., Aug 06

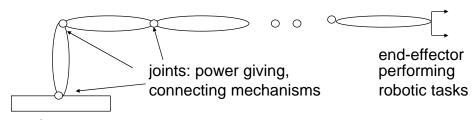
3

System Components

© Marcelo H. Ang Jr., Aug 06

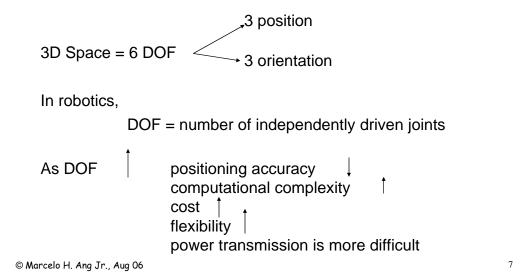

Robotic Manipulator Configurations

- Cartesian
- Cylindrical
- Spherical
- SCARA
- Articulated
 - PUMA
 - Intelledex

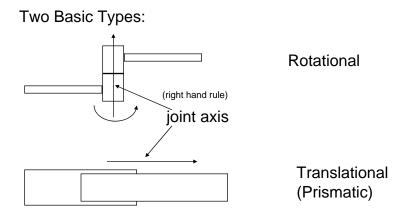

© Marcelo H. Ang Jr., Aug 06

5

Tasks and Mechanism



Connected Kinematic Chain



© Marcelo H. Ang Jr., Aug 06

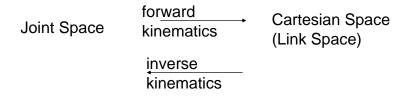
Robot Joints and Degrees-of-Freedom

Robot Joints

© Marcelo H. Ang Jr., Aug 06

Robot Joints

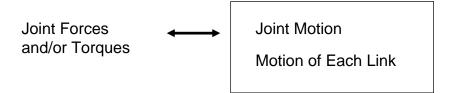
	Rotational	Translational
Accuracy	Non-Uniform	Consistent
Kinematics	Complex	Simple
Control	Coupled, Difficult	Decoupled, Easy
Link Design	Simple	Complex
Dexterity	Good	Bad


As the number of rotational joints increase,

- task planning complexity
- control algorithm complexity
- dexterity
- accuracy

© Marcelo H. Ang Jr., Aug 06

Robot Kinematics


- kinematic modeling of robotic manipulator
- position, velocities, accelerations, etc. of each link
- relationship to joint position, velocity, etc.
- pure geometry no regard to forces

© Marcelo H. Ang Jr., Aug 06

Robot Dynamics

• Equations of Motion of the Robotic Manipulator

© Marcelo H. Ang Jr., Aug 06

11

Robot Control

- · What is it?
 - What should the joint actuations be, so the robot does the task
 - » Motion
 - » Force
 - » Both
- We know kinematics and dynamics, why do we need conrtrol?

© Marcelo H. Ang Jr., Aug 06

Robot Control

- Motion Control
 - design of a stable and robust algorithm to coordinate joint motion and enable the robot to follow a specified trajectory, described in a Cartesian coordinate frame
 - Point-to-Point
 - Trajectory Following
 - Independent Joint Control
 - Inverse Dynamics Control (Computed Torque)
- Force Control
- Compliance Control
- Hybrid Position/Force Control
- Impedance Control

© Marcelo H. Ang Jr., Aug 06

13

Task Planning

- · Robotic task is broken down into
 - motion commands
 - force/torque commands
 - strategies to react to forces/torques
- Trajectory Generation
 - joint trajectories
 - » position of each joint as a function of time
 - » coordinated motion of joints to provide desired endeffector motion

© Marcelo H. Ang Jr., Aug 06

Manipulator Design

- Dexterity Considerations (Geometry, Workspace)
- Control Considerations
- Rigid Vs Flexible
- End-Effector Toolings
- Actuators and power transmission
- Sensors
- Depending on task (e.g., number of DOF?)

© Marcelo H. Ang Jr., Aug 06

15

Robot Programming

- Robot Operating System and Robot Programming Language
 - VALII, Karel, Robot-Basic, etc
- User Interface
 - AdeptMotionWare
- Walk-Through Programming
- Telerobotics

© Marcelo H. Ang Jr., Aug 06