### CHAPTER 2

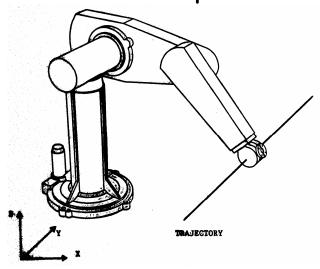
#### Robot Kinematics of Position

© Marcelo H. Ang Jr, 2003.

# Learning Objectives

- Given a robot, derive a kinematic model of the robot
  - Assign frames
  - Derive equations relating relative position and orientation of frames (forward and inverse equations)

# Robotic Manipulator

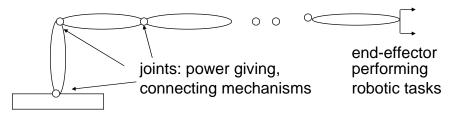


© Marcelo H. Ang Jr, 2003.

Robotic Tasks

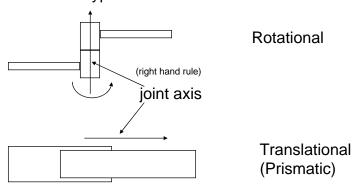
force/moment exerted on environment

#### Chain of rigid bodies connected by joints



### Robot Joints

#### Two Basic Types:



© Marcelo H. Ang Jr, 2003.

5

# Degrees-of-Freedom

As DOF positioning accuracy computational complexity flexibility power transmission is more difficult

© Marcelo H. Ang Jr, 2003.



m parameters

6 independent parameters

To completely specify:  $6 \le m$ 

Operational Space:

 $m_0 \le 6$  independent parameters

Task Space:

Joint Space:  $m_k < m$ : subset of end-effector

end-effector

parameters to accomplish the

task

 $m_{k(0)}$ : if independent parameters

© Marcelo H. Ang Jr, 2003.

n DOF

7

# Robot Kinematic Modeling

# THE DENAVIT-HARTENBERG REPRESENTATION

In the robotics literature, the Denavit-Hartenberg (D-H) Representation has been used, almost universally, to derive the kinematic description of robotic manipulators. The appeal of the D-H representation lies in its algorithmic approach. In this handout, we provide an algorithm for the assignment of robotic coordinate frames, highlight the conventions associated with the D-H approach, and exemplify the development through the Puma and Stanford manipulators.

#### STEP 1: Number the Robot Joints and Links

Robotic manipulators are articulated, open kinematic chains of N rigid bodies (links) which are connected serially by joints. The links are numbered consecutively from the base (link 0) to the final end (link N). The joints are the points of articulation between the links and are numbered from 1 to N so that joint *i* connects links (*i*-1) and *i*. Each joint provides one degree-of-freedom which can either be a rotation or translation. There is no joint at the end of the final link.

© Marcelo H. Ang Jr, 2003.

9

# Robot Kinematic Modeling

#### STEP 2: Assign Link Coordinate Frames

To describe the geometry of robot motion, we assign a Cartesian coordinate frame  $(O_i; x_i, y_i, z_i)$  to each link, as follows:

- the  $z_i$  axis is directed along the axis of motion of joint (i + 1), that is, link (i + 1) rotates about or translates along  $z_i$ ;
- the  $x_i$  axis lies along the common normal from the  $z_{i-1}$  axis to the  $z_i$  axis (if  $z_{i-1}$  is parallel to  $z_i$ , then  $x_i$  is specified arbitrarily, subject only to  $x_i$ being perpendicular to  $z_i$ ); and

© Marcelo H. Ang Jr, 2003.

#### STEP 2: Assign Link Coordinate Frames

• the y<sub>i</sub> axis completes the right-handed coordinate system.

The origin of the robot base frame  $O_0$  can be placed anywhere in the supporting base and the origin of the last (end-effector) coordinate frame  $O_N$  is specified by the geometry of the end-effector.

© Marcelo H. Ang Jr, 2003.

11

# Robot Kinematic Modeling

#### STEP 3: Define the Joint Coordinates

The joint coordinate  $q_i$  is the angular displacement around  $z_{i-1}$  if joint i is rotational, or the linear displacement along  $z_{i-1}$  if joint i is translational. The N-dimensional space defined by the joint coordinates  $(q_1,...,q_N)$  is called the configuration space of the N DOF mechanism.

© Marcelo H. Ang Jr, 2003.

#### STEP 4: Identify the Link Kinematic Parameter

In general, four elementary transformations are required to relate the i-th coordinate frame to the (i-1)-th coordinate frame:

- Rotate an angle of  $\theta_i$  (in the right-handed sense) about the  $z_{i-1}$  axis, so that the  $x_{i-1}$  axis is parallel to the  $x_i$  axis.
- Translate a distance of  $r_i$  along the positive direction of the  $z_{i-1}$  axis, to align the  $x_{i-1}$  axis with the  $x_i$  axis.

© Marcelo H. Ang Jr, 2003.

13

# Robot Kinematic Modeling

#### STEP 4: Identify the Link Kinematic Parameter

- Translate a distance of  $d_i$  along the positive direction of the  $x_{i-1} = x_i$  axis, to coalesce the origins  $O_{i-1}$  and  $O_i$ .
- Rotate an angle of  $\alpha_i$  (in the right-handed sense) about the  $x_{i-1} = x_i$  axis, to coalesce the two coordinate systems.

The *i*-th coordinate frame is therefore characterized by the four D-H kinematic link parameters  $\theta_i$ ,  $r_i$ ,  $d_i$  and  $\alpha_i$ . If joint *i* is rotational, then  $q_i = \theta_i$ , and  $\alpha_i$ ,  $d_i$  and  $r_i$  ware constant parameters which depend upon the

STEP 4: Identify the Link Kinematic Parameter

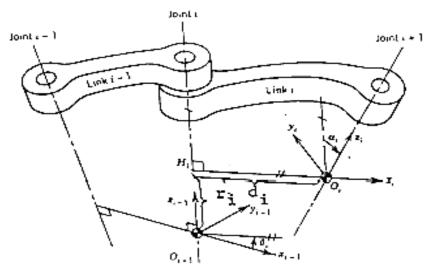
geometric properties and configuration of link i. If joint i is translational, then  $q_i = r_i$ , and  $d_i$ ,  $\alpha_i$  and  $\theta_i$  are constant parameters which depend upon the configuration of link i. For both rotational and translational joints,  $r_i$  and  $\theta_i$  are the distance and angle between links (i-1) and i;  $d_i$  and  $\alpha_i$  are the length and twist of link i.

© Marcelo H. Ang Jr, 2003.

15

# Robot Kinematic Modeling

STEP 4: Identify the Link Kinematic Parameter



#### STEP 5: Define the Link Transformation Matrices

The position and orientation of the i-th coordinate frame can be expressed in the (i-1)-th coordinate frame by the following homogeneous transformation matrix:

$$A_i = Rot(z, \theta) Trans(0, 0, r_i) Trans(d_i, 0, 0) Rot(x, \alpha)$$

$$\mathbf{A}_i(\mathbf{q}_i) = \overset{i\text{--}1}{\mathbf{T}_i} = \begin{pmatrix} \cos\theta_i & -\cos\alpha_i \sin\theta_i & \sin\alpha_i \sin\theta_i & d_i \cos\theta_i \\ \sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i \cos\theta_i & d_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & r_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

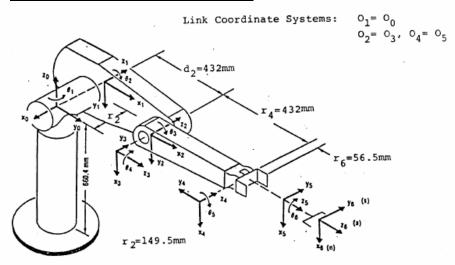
# Robot Kinematic Modeling

#### <u>STEP 6</u>: Compute the Forward Transformation <u>Matrix</u>

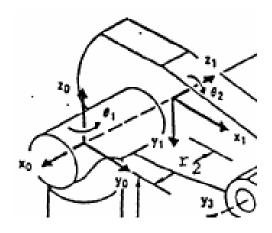
The position and orientation of the end-effector coordinate frame is expressed in the base coordinate frame by the forward transformation matrix:

$${}^{0}T_{N}(q_{1}, q_{2},..., q_{N}) = {}^{0}T_{N} = A_{1}A_{2}...A_{N} = \begin{pmatrix} n_{x} & s_{x} & a_{x} & p_{x} \\ n_{y} & s_{y} & a_{y} & p_{y} \\ n_{z} & s_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

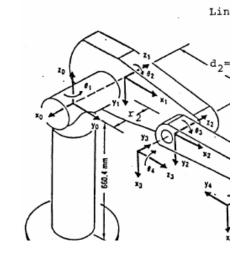
### EXAMPLE 1: The Puma Robot



# Frames 0 to 1



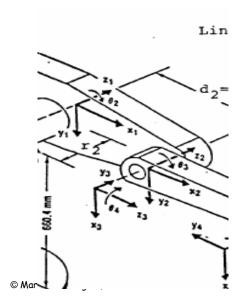
# Frames 1 to 2



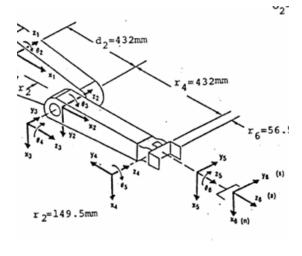
© Marcelo H. Ang Jr, 2003.

21

# Frames 2 to 3



# Frames 3 to 4, to 5, to 6

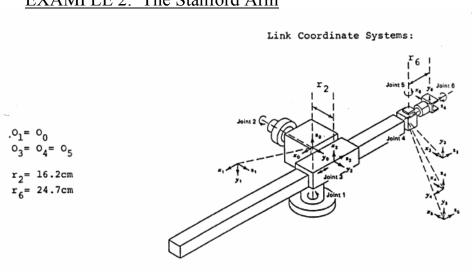


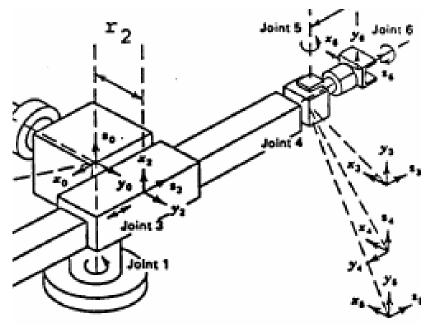
© Marcelo H. Ang Jr, 2003.

23

# Robot Kinematic Modeling

### **EXAMPLE 2: The Stanford Arm**

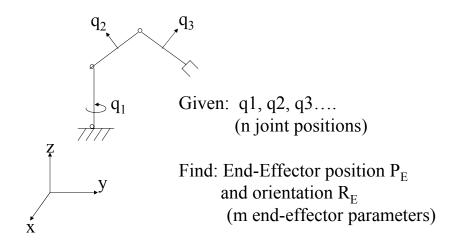




© Marcelo H. Ang Jr, 2003.

25

# Forward Kinematic Problem



© Marcelo H. Ang Jr, 2003.

### Forward Kinematic Problem

- 1. Assign Cartesian Coordinate frames to each link (including the base  $\phi$  & end-effector N)
- 2. Identify the joint variables and link kinematic parameters
- 3. Define the link transformation matrices.  $^{i-1}T_i = A_i$
- 4. Compute the forward transformation  ${}^{0}T_{N}(q_{1},\,q_{2},\ldots,\,q_{N}) = A_{1}A_{2}A_{3}\ldots A_{N} = \begin{pmatrix} n_{x} & s_{x} & a_{x} & p_{x} \\ n_{y} & s_{y} & a_{y} & p_{y} \\ n_{z} & s_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$  © Marcelo H. Ang Jr, 2003.

### Inverse Kinematic Problem

Given: Position & Orientation Find: joint coordinates of END-EFFECTOR

$${}^{0}T_{N} \longrightarrow q_{1}, q_{2}, q_{3}, ..., q_{N}$$

Need to solve at most six independent equations in N unknowns.

### Inverse Kinematic Problem

#### **ISSUES**

- Existence of solutions
  - Workspace
  - Dextrous Workspace
  - Less than 6 joints
  - Joint limits (practical)
- Multiple solutions
  - Criteria Algebraic Solvability —closed form ( Geometric - numerical number of solutions = 16 $d_i, r_i \neq 0$  for six points

© Marcelo H. Ang Jr, 2003.

29

## Solution To Inverse **Kinematics**

$${}^{0}T_{N} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}...{}^{N-1}T_{N} = A_{1}A_{2}A_{3}...A_{N}$$

$$Given: {}^{0}T_{N} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ \phi & \phi & \phi & 1 \end{bmatrix} Ai = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & d_{i}c\theta_{i} \\ s\theta_{i} & c\alpha_{i}c\theta_{i} & -s\alpha_{i}c\theta_{i} & d_{i}s\theta_{i} \\ \phi & s\alpha_{i} & c\alpha_{i} & r_{i} \\ \phi & \phi & \phi & 1 \end{bmatrix}$$

Find:  $q = q_1, q_2, q_3, \dots, q_N$  (joint coordinates)

# Solution To Inverse Kinematics

$$\begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ \phi & \phi & \phi & 1 \end{bmatrix} = A_1 A_2 A_3 ... A_N$$

$$= A_1 A_1$$

Solution To Inverse Kinematics

General Approach: Isolate one joint variable at a time

$$\underbrace{A_1^{-1\ 0}T_N}_{} = A_2A_3...A_N = \underbrace{{}^1T_N}_{}$$
 function of  $q_1$  function of  $q_2, \ldots, q_N$ 

- Look for constant elements in  ${}^{1}T_{N}$
- Equate LHS(i,j) = RHS(i,j)
- Solve for q<sub>1</sub>

© Marcelo H. Ang Jr, 2003.

# Solution To Inverse

 $\underbrace{A_2^{\text{--}1}A_1^{\text{--}10}T_N}_{A_2^{\text{--}1}A_1^{\text{--}10}T_N} = \underbrace{A_3 \dots A_N}_{A_N} = \underbrace{\frac{2T_N}{\text{function of } q_3, \dots, q_N}}_{\text{function of } q_1, q_2}$ 

- Look for constant elements of <sup>2</sup>T<sub>N</sub>
- Equate LHS(i,j) = RHS(i,j)
- Solve for q<sub>2</sub>
- Maybe can find equation involving q<sub>1</sub> only

#### Note:

 There is no algorithmic approach that is 100% effective

© Marcelo H. Godonetric intuition is required

33

# Solution To Inverse

**Kinematics**There are Two Classes of Robot Geometries for which closed-form inverse kinematic solutions are guaranteed. They are:

- 1. Robots with any 3 joints TRANSLATIONAL
- 2. Robots with any 3 rotational joint axes co-intersecting at a common point

These are DECOUPLED ROBOT GEOMETRIES

meaning

• can reduce system to a lower order subsystem (i.e. 3<sup>rd</sup>-order) for which closed form solutions are

© Marcelo Hghatrainted

## General Analytical Inverse Kinematic Formula

### General Analytical Inverse Kinematic Formula

Case 3: 
$$a\cos\theta + b\sin\theta = 0 \longrightarrow \theta = ATANZ(a, -b)$$
 or  $ATANZ(-a, b)$  2 solutions,  $180^{\circ}$  apart Singularity when  $a = b = 0$   $\longrightarrow$  infinite order degeneracy

Case 4:  $a\cos\theta + b\sin\theta = c$   $a, b, c \neq 0$  2 solutions  $\theta = ATANZ(b, a) + ATANZ(\pm\sqrt{a^2 + b^2 - c^2}, c)$ 

$$\geq 0 \text{ For solution to exist}$$

$$a^2 + b^2 + c^2 < 0 \longrightarrow \text{outside workspace}$$

$$a^2 + b^2 + c^2 = 0 \longrightarrow 1 \text{ solution (singularity)}$$

© Marcelo H. Angde generacy of order 2

# General Analytical Inverse Kinematic Formula

Case 5: 
$$\sin\theta \sin\phi = a$$
  
 $\cos\theta \sin\phi = b$ 

$$\theta = ATANZ(a, b)$$
 if  $sin\phi$  is  $\oplus$  positive  $\theta = ATANZ(-a, -b)$  if  $sin\phi$  is  $\ominus$ negative

If  $\cos \phi = c \rightarrow \phi = ATANZ(\pm \sqrt{a^2 + b^2}, c)$  (2 solutions for  $\phi$ ) Then 2 solutions:

$$\theta = ATANZ(a, b) \qquad \theta = ATANZ(-a, -b)$$

$$\phi = ATANZ(\sqrt{a^2 + b^2}, c) \qquad \phi = ATANZ(-\sqrt{a^2 + b^2}, c)$$
Singularity:  $a = b = 0 \quad |c| = 1$ 

$$\text{March if Anniella fined} \qquad \phi = 1 \text{ solution}$$

# General Analytical Inverse Kinematic Formula

Case 6: 
$$a\cos\theta - b\sin\theta = c$$
 (1)  
 $a\sin\theta + b\cos\theta = d$  (2)

Then 
$$\theta = ATANZ(ad - bc, ac + bd)$$
  
1 solution

Note that for (1) & (2) to be satisfied, or at (1) & (2), we have

$$a^2 + b^2 = c^2 + d^2$$

# Decoupling (Kinematic)

"Finding a <u>subset of joints</u> primarily responsible for the completion of a <u>subset of the manipulator task</u>"

Involves the identification of:

- decoupled task ← Total Task
- decoupled robot subsystem responsible for the decoupled task

Decoupled Robot Geometry – refers to a manipulator Geometry for which decoupling is guaranteed

© Marcelo H. Ang Jr, 2003.

39

# Decoupling (Kinematic)

Decoupled Robot Geometries: (6-axes)

1. Any Three (3) Translational Joints

2. Any Three Co-Intersecting Rotational Axes

3. Any 2 Transl. Joints Normal to a Rot. Joint

4. Transl. Joint Normal to 2 Parallel Joints

New geometries Identified by

5. Any 3 Rot, Joints Parallel

V.D. Tourassis and M.H. Ang Jr., "Task Decoupling in Robot Manipulators," Journal of Intelligent and Robotic Systems 14:283-302. 1995. (Technical Report in 1992).

© Marcelo H. Ang Jr, 2003.

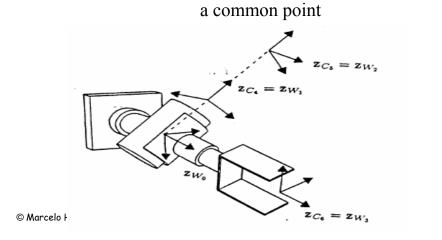
40

Ang, 1992\*

# Decoupling (Kinematic)

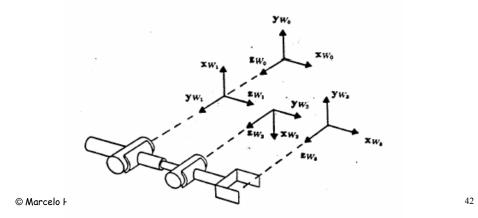
Robots with <u>Spherical Wrists</u> is a popular decoupled robot geometry

3 wrist axes co-intersecting at



# Decoupling (Kinematic)

For robots that do not have decoupled geometries, a closed Form solution may not exist, → one has to resort to numerical and iterative procedures.



### Numerical Solutions

- · m equations in n unknowns
- start with an initial estimate for the n unknowns
- compute the error caused by this inaccurate estimate

$$^{D}T_{N} = (T_{D})^{-1}T_{N} = position \& orientation of end-effector frame with respect to origin of target frame$$

$$r_x \; r_y \; r_z \; \; r_\varphi \; r_\theta \; r_\phi$$

modify estimate to reduce error

© Marcelo H. Ang Jr, 2003.

43

### Numerical Solutions

Three important requirements for the numerical algorithm are:

- i. a priori conditions for convergence
- ii. insensitivity to initial estimates
- iii. provision for multiple solutions
- The most common methods are based on the Newton-Raphson approach.

Ref: A.A.Goldenberg, B. Benhabib, & R.G.Fenton, "A Complete Generalized Solution to the Inverse Kinematics of Robots" IEEE Journal of Rob. & Auto. 1(1): March 1985, pp. 14-20.

© Marcelo H. Ang Jr, 2003.