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CHAPTER 2

Robot Kinematics of Position
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Learning Objectives

• Given a robot, derive a kinematic
model of the robot
– Assign frames
– Derive equations relating relative 

position and orientation of frames 
(forward and inverse equations)
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Robotic Manipulator
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Robotic Tasks

positioning/orienting

force/moment exerted on
environment

Chain of rigid bodies connected by joints

joints: power giving,
connecting mechanisms

end-effector
performing
robotic tasks
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Robot Joints
Two Basic Types:

Rotational

Translational
(Prismatic)

joint axis
(right hand rule)
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Degrees-of-Freedom

3D Space = 6 DOF

3 position

3 orientation

In robotics,
DOF = number of independently driven joints

As DOF positioning accuracy
computational complexity
cost
flexibility
power transmission is more difficult
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end-effector

Joint Space:

n  DOF

Cartesian Space:
m parameters
6 independent parameters

To completely 
specify: 6≤ m

Operational Space:

m0 ≤ 6 independent parameters
Task Space:
mk < m : subset of end-effector
parameters to accomplish the 
task 
mk(0): if independent parameters
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Robot Kinematic Modeling
THE DENAVIT-HARTENBERG 

REPRESENTATION

In the robotics literature, the Denavit-Hartenberg (D-H)
Representation has been used, almost universally, to derive 
the kinematic description of robotic manipulators.  The 
appeal of the D-H representation lies in its algorithmic 
approach.  In this handout, we provide an algorithm for the 
assignment of robotic coordinate frames, highlight the 
conventions associated with the D-H approach, and 
exemplify the development through the Puma and Stanford 
manipulators.



5

© Marcelo H. Ang Jr, 2003. 9

Robot Kinematic Modeling
STEP 1 :  Number the Robot Joints and Links

Robotic manipulators are articulated, open 
kinematic chains of N rigid bodies (links) which are 
connected serially by joints.  The links are numbered 
consecutively from the base (link 0) to the final end 
(link N).  The joints are the points of articulation 
between the links and are numbered from 1 to N so 
that joint i connects links (i-1) and i.  Each joint 
provides one degree-of-freedom which can either be a 
rotation or translation.There is no joint at the end of the 
final link.   
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Robot Kinematic Modeling
STEP 2 :  Assign Link Coordinate Frames

To describe the geometry of robot motion, we 
assign a Cartesian coordinate frame (Oi;xi,yi,zi) to each 
link, as follows: 

• the zi axis is directed along the axis of motion of   
joint (i + 1), that is, link (i + 1) rotates about or 
translates along zi;

• the xi axis lies along the common normal from 
the zi-1 axis to the zi axis (if zi-1 is parallel to zi,  
then xi is specified arbitrarily, subject only to xi
being perpendicular to zi); and
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Robot Kinematic Modeling
STEP 2 :  Assign Link Coordinate Frames

• the yi axis completes the right-handed coordinate  
system.

The origin of the robot base frame O0 can be placed 
anywhere in the supporting base and the origin of the 
last (end-effector) coordinate frame ON is specified by 
the geometry of the end-effector.
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Robot Kinematic Modeling
STEP 3 :  Define the Joint Coordinates

The joint coordinate qi is the angular displacement 
around zi-1if joint i is rotational, or the linear 
displacement along zi-1 if joint i is translational.  The 
N-dimensional space defined by the joint coordinates 
(q1,…,qN) is called the configuration space of the N 
DOF mechanism.
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Robot Kinematic Modeling
STEP 4 :  Identify the Link Kinematic Parameter

In general, four elementary transformations are 
required to relate the i-th coordinate frame to the 
(i-1)-th coordinate frame:

• Rotate an angle of θi (in the right-handed sense)  
about the zi-1 axis, so that the xi-1 axis is parallel 
to the xi axis.

• Translate a distance of ri along the positive  
direction of the zi-1 axis, to align the xi-1 axis with  
the xi axis.
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Robot Kinematic Modeling
STEP 4 :  Identify the Link Kinematic Parameter

• Translate a distance of di along the positive 
direction of the xi-1 = xi axis, to coalesce the 
origins Oi-1 and Oi.

• Rotate an angle of αi (in the right-handed sense) 
about the xi-1 = xi axis, to coalesce the two 
coordinate systems.

The i-th coordinate frame is therefore characterized 
by the four D-H kinematic link parameters θi, ri, di and 
αi.  If joint i is rotational, then qi = θi, and αi, di and ri
are constant parameters which depend upon the 
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Robot Kinematic Modeling
STEP 4 :  Identify the Link Kinematic Parameter

geometric properties and configuration of link i.  If 
joint i is translational, then qi = ri, and di, αi and θi are 
constant parameters which depend upon the 
configuration of link i.  For both rotational and 
translational joints, ri and θi are the distance and angle 
between links (i – 1) and i; di and αi are the length and 
twist of link i.
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Robot Kinematic Modeling
STEP 4 :  Identify the Link Kinematic Parameter
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Robot Kinematic Modeling
STEP 5 :  Define the Link Transformation Matrices

The position and orientation of the i-th coordinate 
frame can be expressed in the (i – 1)-th coordinate 
frame by the following homogeneous transformation 
matrix: 
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Ai = Rot(z, θ) Trans(0, 0, ri) Trans(di, 0, 0) Rot(x, α)
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Robot Kinematic Modeling
STEP 6 :  Compute the Forward Transformation 
Matrix

The position and orientation of the end-effector 
coordinate frame is expressed in the base coordinate 
frame by the forward transformation matrix:

0TN(q1, q2,…, qN) = 0TN = A1A2…AN = 
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⎟
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Robot Kinematic Modeling
EXAMPLE 1:  The Puma Robot
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Frames 0 to 1
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Frames 1 to 2
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Frames 2 to 3
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Frames 3 to 4, to 5, to 6
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Robot Kinematic Modeling
EXAMPLE 2:  The Stanford Arm
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Forward Kinematic Problem
q2

q1

q3

x

y

z

Given:  q1, q2, q3….
(n joint positions)

Find: End-Effector position PE
and orientation RE 
(m end-effector parameters)



14

© Marcelo H. Ang Jr, 2003. 27

Forward Kinematic Problem
1. Assign Cartesian Coordinate frames to each link

(including the base φ & end-effector N)

2. Identify the joint variables and link kinematic
parameters

3. Define the link transformation matrices. i-1Ti = Ai

4. Compute the forward transformation
0TN(q1, q2,…, qN) = A1A2A3…AN = 
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⎟
⎟
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Inverse Kinematic Problem

Given:  Position & Orientation        Find:  joint coordinates  
of END-EFFECTOR

0TN q1, q2, q3,…, qN

Need to solve at most six independent equations in 
N unknowns.
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Inverse Kinematic Problem
ISSUES

• Existence of solutions
– Workspace
– Dextrous Workspace
– Less than 6 joints
– Joint limits (practical)

• Multiple solutions
– Criteria
– Solvability        closed form

numerical   
– number of solutions

= 16        di, ri ≠ 0        for six points

Algebraic

Geometric
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Solution To Inverse 
Kinematics

0TN = 0T1
1T2

2T3…N-1TN = A1A2A3…AN

Find:  q = q1, q2, q3, … , qN (joint coordinates)
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Solution To Inverse 
Kinematics

N321
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12 Equations
6 independent

6 redundant
N unknowns

LHS(i,j) = RHS(i,j)

row
i = 1, 2, 3

column
j = 1, 2, 3, 4
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Solution To Inverse 
Kinematics

General Approach:  Isolate one joint variable at a time

A1
-1 0TN = A2A3…AN = 1TN

function of q1 function of q2, … , qN

• Look for constant elements in 1TN
• Equate LHS(i,j) = RHS(i,j)
• Solve for q1



17

© Marcelo H. Ang Jr, 2003. 33

Solution To Inverse 
Kinematics

A2
-1A1

-10TN = A3…AN = 2TN

function of q1, q2

function of q3, … , qN

only one unknown q2 since q1 has been solved for

• Look for constant elements of 2TN
• Equate LHS(i,j) = RHS(i,j)
• Solve for q2
• Maybe can find equation involving q1 only

Note:  
– There is no algorithmic approach that is 

100% effective
– Geometric intuition is required
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Solution To Inverse 
Kinematics

There are Two Classes of Robot Geometries for which 
closed-form inverse kinematic solutions are guaranteed.
They are:

1. Robots with any 3 joints TRANSLATIONAL

2. Robots with any 3 rotational joint axes 
co-intersecting at a common point

These are DECOUPLED ROBOT GEOMETRIES

meaning
• can reduce system to a lower order subsystem 

(i.e. 3rd-order) for which closed form solutions are
guaranteed 
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General Analytical Inverse 
Kinematic Formula

Case 1:    sinθ = a       a ∈ [-1,1]
cosθ = b       b ∈ [-1,1] θ = ATANZ(a, b)

unique
Case 2:   sinθ = a         a ∈ [-1,1] θ = ATANZ(a, ± )

cosθ = ± 2 solutions
θ, 180º - θ

@ θ = ±90º ,  a  = 1,
“boundary” singularity

cosθ = b         b ∈ [-1,1] θ = ATANZ(± , b)
sinθ = ± 2 solutions

θ, - θ
@ θ = 0º, 180º,  b  = 1,

degeneracy of order 2             “boundary” singularity

2a - 1
2a - 1

2b - 1
2b - 1
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General Analytical Inverse 
Kinematic Formula

Case 3:     acosθ + bsinθ = 0         θ = ATANZ(a, -b) or
ATANZ(-a, b)

2 solutions, 180º apart
Singularity when a = b = 0

infinite order degeneracy 

Case 4:     acosθ + bsinθ = c         a, b, c ≠ 0         2 solutions
θ = ATANZ(b, a) + ATANZ(± , c) 

≥ 0 For solution to exist
a2 + b2 + c2 < 0      outside workspace
a2 + b2 + c2 = 0      1 solution  (singularity)

degeneracy of order 2

222 c  b a −+
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General Analytical Inverse 
Kinematic Formula

Case 5:     sinθsinφ = a
cosθsinφ = b

θ = ATANZ(a, b)         if sinφ is ⊕ positive
θ = ATANZ(-a, -b)      if sinφ is      negative 

If cosφ = c     φ = ATANZ(± , c)    (2 solutions for φ)
Then 2 solutions:

θ = ATANZ(a, b)                     θ = ATANZ(-a, -b) 
φ = ATANZ(              , c)         φ = ATANZ(- , c)

Singularity:  a = b = 0     c  = 1
θ = undefined     φ = 1 solution

22 b a +

22 b a + 22 b a +
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General Analytical Inverse 
Kinematic Formula

Case 6:       acosθ - bsinθ = c      (1)
asinθ + bcosθ = d     (2)

Then     θ = ATANZ(ad – bc, ac + bd)
1 solution 

Note that for (1) & (2) to be satisfied, or at (1) & (2),
we have

a2 + b2 = c2 + d2
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Decoupling (Kinematic)

“Finding a subset of joints primarily responsible for the
completion of a subset of the manipulator task”

Involves the identification of:
– decoupled task        Total Task
– decoupled robot subsystem responsible for the 

decoupled task 

Decoupled Robot Geometry – refers to a manipulator
Geometry for which decoupling is guaranteed
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Decoupling (Kinematic)
Decoupled Robot Geometries:  (6-axes)
1. Any Three (3) Translational Joints

2. Any Three Co-Intersecting Rotational Axes

3. Any 2 Transl. Joints Normal to a Rot. Joint

4. Transl. Joint Normal to 2 Parallel Joints

5. Any 3 Rot, Joints Parallel  

Identified by
Pieper, 1968

New 
geometries
Identified by
Ang, 1992*

V.D. Tourassis and M.H. Ang Jr., “Task Decoupling in Robot Manipulators,” Journal of Intelligent and Robotic Systems
14:283-302, 1995. (Technical Report in 1992).
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Decoupling (Kinematic)
Robots with Spherical Wrists is a popular decoupled robot
geometry 3 wrist axes co-intersecting at 

a common point
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Decoupling (Kinematic)
For robots that do not have decoupled geometries, a closed
Form solution may not exist,      one has to resort to
numerical and iterative procedures.  
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Numerical Solutions
• m equations in n unknowns
• start with an initial estimate for the 

n unknowns
• compute the error caused by this 

inaccurate estimate

• modify estimate to reduce error

DTN = (TD)-1TN = position & orientation of end-effector
frame with respect to origin of target
frame 

rx ry rz rφ rθ rϕ
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Numerical Solutions
Three important requirements for the numerical algorithm are:

i. a priori conditions for convergence
ii. insensitivity to initial estimates
iii. provision for multiple solutions

• The most common methods are based on the
Newton-Raphson approach.

Ref:  A.A.Goldenberg, B. Benhabib, & R.G.Fenton, “A Complete
Generalized Solution to the Inverse Kinematics of Robots”
IEEE Journal of Rob. & Auto.  1(1): March 1985, pp. 14-20. 


