CHAPTER 2

Robot Kinematics of Position

© Marcelo H. Ang Jr, 2003.

Learning Objectives

- Given a robot, derive a kinematic
model of the robot
- Assign frames

- Derive equations relating relative
position and orientation of frames
(forward and inverse equations)
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Robotic Manipulator
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positioning/orienting

Robotic Tasks
force/moment exerted on

environment

Chain of rigid bodies connected by joints

O 0 O©[:

A end-effector
joints: power giving, performing
<~ connecting mechanisms robotic tasks
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Robot Joints

Two Basic Types:

I Rotational

1™
(right hand rule)

N joint axis

Translational
(Prismatic)
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Degrees-of-Freedom

3 position

3D Space = 6 DOF <3 orientation

In robotics,
DOF = number of independently driven joints

As DOF { positioning accuracy l
computational complexity
cost |
flexibility X
power transmission is more difficult
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Cartesian Space:

m parameters

end-effector 6 independent parameters

To completely
specify: 6<m

Operational Space:

m, < 6 independent parameters

Task Space:
Joint Space: m, < m : subset of end-effector
parameters to accomplish the
n DOF task

my ) if independent parameters
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Robot Kinematic Modeling

THE DENAVIT-HARTENBERG
REPRESENTATION

In the robotics literature, the Denavit-Hartenberg (D-H)
Representation has been used, almost universally, to derive
the kinematic description of robotic manipulators. The
appeal of the D-H representation lies in its algorithmic
approach. In this handout, we provide an algorithm for the
assignment of robotic coordinate frames, highlight the
conventions associated with the D-H approach, and
exemplify the development through the Puma and Stanford

manipulators,.,



Robot Kinematic Modeling

STEP 1 : Number the Robot Joints and Links

Robotic manipulators are articulated, open
kinematic chains of N rigid bodies (links) which are
connected serially by joints. The links are numbered
consecutively from the base (link 0) to the final end
(link N). The joints are the points of articulation
between the links and are numbered from 1 to N so
that joint i connects links (i-1) and i. Each joint
provides one degree-of-freedom which can either be a
rotation or translation.There is no joint at the end of the
final link.
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Robot Kinematic Modeling

STEP 2 : Assign Link Coordinate Frames

To describe the geometry of robot motion, we
assign a Cartesian coordinate frame (O;;X;,y;,z;) to each
link, as follows:

* the z; axis is directed along the axis of motion of
joint (i + 1), that is, link (i + 1) rotates about or
translates along z;

* the x; axis lies along the common normal from
the z; | axis to the z; axis (if z;_; 1s parallel to z;,
then x; is specified arbitrarily, subject only to x;

being perpendicular to z;); and
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Robot Kinematic Modeling

STEP 2 : Assign Link Coordinate Frames

* the y; axis completes the right-handed coordinate
system.

The origin of the robot base frame O, can be placed
anywhere in the supporting base and the origin of the
last (end-effector) coordinate frame Oy is specified by
the geometry of the end-effector.

© Marcelo H. Ang Jr, 2003.

Robot Kinematic Modeling

STEP 3 : Define the Joint Coordinates

The joint coordinate q; is the angular displacement
around z; ,if joint 1 is rotational, or the linear
displacement along z; , if joint i is translational. The
N-dimensional space defined by the joint coordinates
(qy5---»qy) 1s called the configuration space of the N
DOF mechanism.
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Robot Kinematic Modeling

STEP 4 : ldentify the Link Kinematic Parameter

In general, four elementary transformations are
required to relate the i-th coordinate frame to the
(i-1)-th coordinate frame:

+ Rotate an angle of 0; (in the right-handed sense)
about the z;_; axis, so that the x;_, axis 1s parallel
to the x; axis.

* Translate a distance of r; along the positive
direction of the z; | axis, to align the x;_; axis with

the x; axis.
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Robot Kinematic Modeling

STEP 4 : ldentify the Link Kinematic Parameter

* Translate a distance of d; along the positive
direction of the x; ; = x; axis, to coalesce the
origins O; ; and O;.

* Rotate an angle of o; (in the right-handed sense)
about the x; ;| = x; axis, to coalesce the two

coordinate systems.

The i-th coordinate frame is therefore characterized
by the four D-H kinematic link parameters 0, r;, d; and
o;. If joint i is rotational, then g; = 6;, and «;, d; and r;

o MiES.SONstantparameters which depend upon the
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Robot Kinematic Modeling

STEP 4 : ldentify the Link Kinematic Parameter

geometric properties and configuration of link i. If
joint i is translational, then q; =r;, and d;, a; and 6; are
constant parameters which depend upon the
configuration of link i. For both rotational and
translational joints, r; and 0; are the distance and angle
between links (i — 1) and i; d; and o; are the length and
twist of link i.
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Robot Kinematic Modeling

STEP 4 : ldentify the Link Kinematic Parameter

lennl L

Jonle =1 Jomle = ]




Robot Kinematic Modeling

STEP 5 : Define the Link Transformation Matrices

The position and orientation of the i-th coordinate
frame can be expressed in the (i — 1)-th coordinate
frame by the following homogeneous transformation
matrix:

A, =Rot(z, 0) Trans(0, 0, r;) Trans(d;, 0, 0) Rot(x, o)
cosO; -cosa;sinf;, sino;sind;,  d,cos,
. sinf,  cosa; cosO, -sina; cosO, d;sind,
Ai(q)="T= :
0 sino, cosa.; I
0 0 0 1
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Robot Kinematic Modeling

STEP 6 : Compute the Forward Transformation
Matrix

The position and orientation of the end-effector
coordinate frame is expressed in the base coordinate
frame by the forward transformation matrix:

n. s, a, p,
OTN(QD Qos- > ) = OTN =AA) A=
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Robot Kinematic Modeling

EXAMPLE 1: The Puma Robot

Link Coordinate Systems: 0,= 04

02= 03, o

Frames O to 1
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2= O
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Frames 1 to 2

Lin
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Frames 2 to 3

Lim

22
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Frames 3to 4,105, to 6

n
T 2!11’9 . Smm
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Robot Kinematic Modeling

EXAMPLE 2: The Stanford Arm

Link Coordinate Systems:

+ols 0c

03= 04= 05
r,= 16.2¢cm
Ie= 24 .7em
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Forward Kinematic Problem

zqz)/ . ds
q, Given: ql, g2, q3....
(n joint positions)
V4
Find: End-Effector position Py
Y and orientation Ry
s (m end-effector parameters)
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13



Forward Kinematic Problem

1. Assign Cartesian Coordinate frames to each link
(including the base ¢ & end-effector N)

2. Identify the joint variables and link kinematic
parameters

3. Define the link transformation matrices. !T, = A,

4. Compute the forward transformation 0 .
0TN(ql, qz,.-., qN) = A1A2A3.--AN = nx x X X

<
9]
<
Qo
«
o
«

N
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Inverse Kinematic Problem

Given: Position & Orientation Find: joint coordinates
of END-EFFECTOR

Ty — 419 93+ Ay

Need to solve at most six independent equations in
N unknowns.
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Inverse Kinematic Problem

ISSUES

« Existence of solutions
— Workspace
— Dextrous Workspace
— Less than 6 joints
— Joint limits (practical)

« Multiple solutions
— Criteria Algebraic
— Solvability —[closed form 7~

numerical Geometric

— number of solutions

=16 d,1;#0 for six points
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Solution To Inverse
Kinematics

n o, a_ p, [0, -cash, sash, d.co, ]
n. o a sO. ca.cO. -sa.cH. dsO.
Given:’T,=| ~ 7 7 By Ai = ' v DR
nz Oz az pz ¢ sai Cai rl
9 ¢ ¢ 1 4 ¢ ¢ 1

Find: q=q;,9, 93 --- » Ay (joint coordinates)
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Solution To Inverse

] Kinematics
nX OX aX pX
n (0] a
r Ov By Py = A ALALA
I‘lZ OZ a'Z pZ
¢ ¢ 1]

6 independent
12 Equations N unknowns

~ 6 redundant

LHS(1,)) = RHS(,))

/ - column
row j=1,2,3,4
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Solution To Inverse
Kinematics

General Approach: Isolate one joint variable at a time

R —
function of q function of q, ... , qy

* Look for constant elements in Ty
» Equate LHS(i,j) = RHS(1,))
* Solve for q

© Marcelo H. Ang Jr, 2003. 32
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Solution To Inverse
Kinematics
As... Ay =Ty

A, TA 0T =
——

%/—/ function of d3, --- > qdN

function of q;, q,

- only one unknown q, since q, has been solved for

* Look for constant elements of ?Ty
» Equate LHS(1,j) = RHS(1,))
* Solve for q,
* Maybe can find equation involving q, only
Note:
— There is no algorithmic approach that is
100% effective
© Marcelo 5. Ao AAG(ric intuition is required

Solution To Inverse
Kinematics

There are Two Classes of Robot Geometries for which
closed-form inverse kinematic solutions are guaranteed.
They are:

1. Robots with any 3 joints TRANSLATIONAL

2. Robots with any 3 rotational joint axes
co-intersecting at a common point

These are DECOUPLED ROBOT GEOMETRIES

/ meaning

 can reduce system to a lower order subsystem
(i.e. 3"-order) for which closed form solutions are
© Marcelo Hgm%ﬂra'ﬁleéed
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General Analytical Inverse

Kinematic Formula
Case 1: sinOzaTr ael[-1,1] }

cosO=b [ bel[-1,1] 0= ATANZ(a, b)
unique
Case2: sinO=a ae[-1,1] 0=ATANZ(a, W)

cosO = +£4/1-32 2 solutions

0, 180°-0
@0 =190°,|a|=1,
“boundary”— singularity
cosO=b bel[-1,1] 0=ATANZ(+/1-b%,b)

sin® = £/1 - b? 2 solutions
0,-0
@ 06=0°180°% bl =1,
© Marcelodptretietdey of order 2 “boundary” — singularity”

General Analytical Inverse

Kinematic Formula
Case 3:  acosB +bsin@ =0 — 0 =ATANZ(a, -b) or
ATANZ(-a, b)
2 solutions, 180° apart
Singularity whena=b =0
— infinite order degeneracy

Case 4: acosO +bsinb =c a,b,c#0 2 solutions
0= ATANZ(b, a) + ATANZ(++/a2 + b2 —c2 ,¢)
-

> ( For solution to exist
a? + b2+ ¢2 <0 — outside workspace
a2+ b2+ c2=0 — 1 solution (singularity)
© Marcelo H. Angde g8heracy of order 2 36
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General Analytical Inverse
Kinematic Formula

Case 5: sinfsing =a
cosOsing =b

0 =ATANZ(a, b) if sin¢ 1s @ positive
0 = ATANZ(-a, -b) ifsingis ©Onegative

Ifcosp=c - ¢ =ATANZ(% /32 +b%,c) (2 solutions for ¢)

Then 2 solutions:
0 = ATANZ(a, b) 0 = ATANZ(-a, -b)

¢ = ATANZ(Ja* +b*,¢) | ¢ =ATANZ(+/a’ +b%©)

Singularity: a=b=0 |c|=1
omarcgp = mntefpaed ¢ = 1 solution 37

General Analytical Inverse
Kinematic Formula

Case 6: acosf -bsin@=c (1)
asinO + bcos6=d (2)

Then 0= ATANZ(ad - bc, ac + bd)
1 solution

Note that for (1) & (2) to be satisfied, or at (1) & (2),

we have

© Marcelo H. Ang Jr, 2003. 38
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Decoupling (Kinematic)

“Finding a subset of joints primarily responsible for the
completion of a subset of the manipulator task”

Involves the identification of:
— decoupled task «— Total Task
— decoupled robot subsystem responsible for the
decoupled task

Decoupled Robot Geometry — refers to a manipulator
Geometry for which decoupling is guaranteed
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Decoupling (Kinematic)

Decoupled Robot Geometries: (6-axes)

1. Any Three (3) Translational Joints Identified by

2. Any Three Co-Intersecting Rotational Axes Pieper, 1968

N
3. Any 2 Transl. Joints Normal to a Rot. Joint| y\jow

. geometries
Identified by
Ang, 1992%*

4. Transl. Joint Normal to 2 Parallel Joints

5. Any 3 Rot, Joints Parallel )

V.D. Tourassis and M.H. Ang Jr., “Task Decoupling in Robot Manipulators,” Journal of Intelligent and Robotic Systems
14:283-302, 1995. (Technical Report in 1992).
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Decoupling (Kinematic)

Robots with Spherical Wrists is a popular decoupled robot
geometry

L» 3 wrist axes co-intersecting at
a common point
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Decoupling (Kinematic)

For robots that do not have decoupled geometries, a closed
Form solution may not exist, = one has to resort to
numerical and iterative procedures.

¥u,
. XKWy
W, :“;j\i
-
> .
~ . .
YW EW, S— YW,
2
-
- -
-~ EW; o X,
- . X,
’f B, ]

Fd
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Numerical Solutions

* m equations in n unknowns

- start with an initial estimate for the
n unknowns

- compute the error caused by this
inaccurate estimate
DT\ = (Tp)'Ty = position & orientation of end-effector
frame with respect to origin of target
@ frame
T T, T, Ty Tg T,
- modify estimate to reduce error
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Numerical Solutions

Three important requirements for the numerical algorithm are:
1. apriori conditions for convergence
1. insensitivity to initial estimates
ii1. provision for multiple solutions

¢ The most common methods are based on the
Newton-Raphson approach.

Ref: A.A.Goldenberg, B. Benhabib, & R.G.Fenton, “A Complete
Generalized Solution to the Inverse Kinematics of Robots”
IEEE Journal of Rob. & Auto. 1(1): March 1985, pp. 14-20.
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