CHAPTER 3

Rigid Body Motion and
Robot Kinematics of Velocity

© Marcelo H. Ang Jr., Aug 06

Learning Objectives

1. Relate time derivatives of position and
orientation representations with translational
and angular velocities.

Transform velocities in different spaces

3. Relate joint velocities with end-effector
velocities
Understand robot singularities

5. Use velocity relationships to command motion

of robots (resolved rate motion control)
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Translational Velocities

Aug € R¥*! = translational velocity of frame B
(i.e., origin of frame B) relative of

frame A
A _ d A _ hm ApB(t+At)_ ApB(t)
Ug =— P =
dt At—0 At

S “frame of differentiation” is A

Velocity, like any vector may be expressed in another

frame, say W w w
AUB= R, “u,
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Translational Velocities

In general, velocity vector depends on 2 frames:

— frames of differentiation — A — leading subscript —
this is the frame where the velocity of B is
instantaneously computed from (can be thought of
as velocity reference point)

— frame resulting vector is expressed in — W — leading
superscript

When leading subscript is omitted, it is implied that the
velocity is relative to some understood universal frame of
reference.

A missing leading superscript implies a generic frame of

expression.
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Rotational Velocities

s> At a certain instant, frame B has an
orientation ARy and its rotational motion
may be represented by the rotational

(angular) velocity vector
Aw, € R unit vector along Awy {B}

= instantaneous = Akg

axis of rotation
magnitude of Awg (A}
= speed of rotation

| d lim AR, (t+Af)- *Ry (1)
S Awg is related to E[ARB =R, :At 0 B At B
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A
Wg
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Rotational Velocities

Let Rot ( k, dO ) = incremental change in rotation.
Awg = Aky 0 = Ak, 49
dt
. ARg+AARg=Rot (k,d0) R,

\——\ﬁ_# A —
pre-multiplication since d0 ks is
expressed in the frame A (base)

Rot (k, 0)=
k k versO + cosO k k versf-k, sin@ k k vers®+k sinf
k k vers® +k, sinf k k vers6+cos® k k versf-k sinb

k k,versf -k sin® k k, versd+k sin0 k, k, vers+ cos6

o here versd =1 - cos0)

]



Rotational Velocities

For a differential change (small) d6

ocosH

cos(0 + dO) = cosO + d6 = cos0 + (-sin6)dO

for 6 = 0, dO small

cos(d0) =1 (approx)

dsinf _
0 dO = sin0O + cosO(dO)

sin(0 + d0) = sind +
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Rotational Velocities
for 6 =0, dO = small
sin(d0) =0 + 1d6

=d0 (approx)

for 6 =0, dO = small

vers(d0) = 1 —cos(d®) =0 (approx)
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Rotational Velocities
1 -k,do k,do
~Rot(kd0)=| k.do 1 -k.do
“k,d0 k.do 1
Back to:

AR, =Rot(k,d0) "R, - *R,
=[Rot (k,d0)-1] *R,
¢ -k,d6  k,do
AR =k, d0 ¢4 -k dO| *R,

X

k,do k.do ¢
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Rotational Velocities
dividing by dt:

do do |
k— k=
¢ “ dt Y dt
A
d RB: kz@ ¢ _kx@ ARB
dt dt dt
do do
k — =
Y dt " dt / |
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Rotational Velocities

0 AWBZ AWBy
AEB = AWBZ 0 'AWBX ARB
—AWBy AWBX 0
\ —~ _/
Let this be AQBZ

“cross product operator” of Awyg

ARB = AWB ARB
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The Orthonormal (Rotation) Matrix
& Skew Symmetric Matrices

Skew symmetric matrix as vector cross product:

0 -Ww W W

z y X
Let S=|w, 0 -w,|andw=|w,
-W, W, 0 W,
Then
Sp=wxp

where p € R3*! vector
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3 x 3 matrix version of 3 x 1 vector
Cross product equivalent

- .,

R=adR—>(x y 2)=a(x y z)
S M
Time derivative of
Unit vectors

X = WX X =WX

3 x 1 unit vectors

y=Wxy =Wy
7=WxZ=Wz
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Orientation Error

» Angular velocity — measure of instantaneous 3 x 1
orientation error

 Allows the relationship between

AR < AD s0=fo

AR=[R
R=aR—>(x y 2)=a(x y 12)
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Rotational Velocities

As with any vector, the rotational velocity vector Awyg
may be expressed in another frame C:
C _C A
AWB - RA WB
\_Y_J
leading subscript A: frame the body is rotating relative to

(frame & differentiation)

leading superscript C: frame of Expression
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Rotational Velocities

The equivalent matrix product representation is:

Cw -C A A
W =Ry Awg AR¢

{B} & {C} are attached to the same
rigid body which is rotating

1C}
B AR = AR, BR,.

. . . L] L] ¢ L]
Diff with time — AR =4Rg B)(C + ARp BR(
1A}
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Rotational Velocities

A\ \
KC — A Tﬁ&
A/\ A/E{'—AA A
We R¢e ™ WB}(C

AWC = AWB

= rotational velocity of rigid body is equal to rot. velocity
of any frame attached to the rigid body.
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The Orthonormal (Rotation) Matrix
& Skew Symmetric Matrices

RRT =1

RRT + RRT = 0
(RRT)T + RRT = 0
Define S = RRT = /w\

ThenS +ST=0

S = a skew symmetric matrix
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Roll Pitch Yaw Rates &
Angular Velocities

ARg =Rot (z, ¢) Rot (y, 0) Rot (x, @)

0 0 1
w =|0|¢ + Rot(z¢)| 1|0 + Rot(z¢)Rot(y,0)|0|¢p
1 0 0
0 -sing cos¢cosB ¢
w=|0 cos¢g sin¢gcosB 0 .
: . w=E_1x
1 0 -sin @ 7 orR
N v
e x,=E. w

-1
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Roll Pitch Yaw Ratio &
Angular Velocities

cos ¢ sin g  sin °¢ .
cos 0 cos 0

X, =| -sing¢ cos ¢ 0
cos 0 cos 0

If cos® = 0, matrix does not exist
— Math. Singularity
w — X, not always possible
Not all possible angular matrix can be represented
This is a problem with 3 parameter representations for
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Simultaneous Rotational &
Translational Velocities

Given: Frames A, B & C

{B} & {C} in motion

with respect to {A}
K

Find: Relationships between velocities
Apc ="pp + *Rg Ppc
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Simultaneous Rotational &
Translational Velocities

Differentiating
AU =AUg + ARy BU( + RB Pc

|

- Contribution of rotational velocity of frame B to the
translational velocity of C =
AkB Ppc = LAWBXJ ARg Ppc = 4wy x (*Rg Ppc)
=- ARg Ppc x Awg
=Awg X (*pc — *Pp)
. AUg =AUg +*Rg PUc + Awg x (*Rg ®pc)
=AUg +4Rg PUc + Awg X (*pc — “pp)
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Simultaneous Rotational &
Translational Velocities

AR =AR; BR..
ARC - AliB BR.. + AR, Blic
N A /\
AWC ARC = AWB ARB BRC + ARB BWC BRC

A\ N
=Awp AR + ARy Bw BR, AR

N A N
AWc % =Awg AB{+ ARg Pwc PR, AB{
A AN 7

A = A A B B
We = 2w T 2Ry Pwe PR,
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Simultaneous Rotational &
Translational Velocities

But N\ VAN

A
= A B B
s We =*Rg "W PR, &

W =ARg Bw, expressing vector in
A A diff frame
B AWC = AWB-i- AWC
OR in vector form:
Awe = Awg + ARg Pwc
Note also (in homogeneous transformation)

. [AWB ,,,,, Ry AUB}

06

>w>
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Computation Of
End-Effector Velocity

(6x1) VN{“Nj:f(q,é’p

Wi

joint velocities

joint position

25

Computation Of
End-Effector Velocity

Let us examine the contribution of the ith joint motion to
end-effector velocity. We set all other joint velocities ¢ :
(.lc;éo (’11=(.12=--.=(.1i_1=(ii+1=--.(.lN=¢
so motion is occurring with respect to z, ; axis
For joint 1 rotational

WiTZadi .

u; =w; x Ry Hlpy = Ziq ¢; X (PN—Pi1)

=21 X (PN —Pi1) 4
Note that o, ; has no translational velocity

origin of frame i-1 w/c contains z, ,

since joint is rotational
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Computation Of
End-Effector Velocity

For a translational joint 1,

w; =0

=z,
The total velocity of the end-effector during coordinated
motion is the superposition of all the elementary velocities
that represent single joint motion:

u,
U~ ||
Vy = =
Wx
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M=

=

._.
]
—

Computation Of
End-Effector Velocity

xl A

q,
v=(1, 1, I, .. 1y)
_ _/

Y o

6xNJ(@  \dy

Column J; represents motion contribution of joint 1

J(q) = Jacobian matrix
Cartesian <> joint space
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Computation Of
End-Effector Velocity

For a translational joint 1

J_Zi-l
Y0

For a rotational joint i

J :|:Zi-l X(Py -Pis ):|

1
Zi,
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Jacobian Transformations

* Velocities expressed in different frames
N = End Effector
Avy © Bvy B = may be a link coord
frame that is held
instantaneously constant

For ARy and Apy constants
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Jacobian Transformations

+ Diff pts on End-Effector

For BRy and Bpy constants
B & N are attached to a rigid body moving
with respect to A:

N = | Two Frames
Attached to
B = | End-Effector
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Jacobian Transformations

A“N = AuB + AWBX ( APN - APB)

another J
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Robot Kinematics of Velocity

N(J) = Null space R(J) = Range Space
of J of J
= or column

dq —produces no

motion dx ‘
@i
=
S Ox € Rm

0q € R
Joint Space End-Effector Spacg
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space of J

Inverse Kinematics of Velocity

Solution to dx =J 8q [ i.e., given 8x, Find dq |

7

mxl nxl

Exists if & only if
Rank J = Rank (J | 8x)
/

H_/
mxn m X ( n+ 1) matrix obtained by

augmenting J with column &x

Meaning dx must be in the subspace spanned by the
columns of J
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Inverse Kinematics of Velocity

First: Convert 8x to 8x, € R™o( velocity, basic kinematic
model)

dxy=Jjp ¢ ("n=Jpq)
|
R™o Rn m, <6

Solution exists if & only if Rank J; = min( m,, n )

i.e., columns of J,, span the space R™min(men)
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Inverse Kinematics of Velocity

General Solution:

< generalized Inverse
6q = Jy*(q) Ox, + [ Iln - Jy*(q) Jy(q) ] 8q,

nxn [dentity
any arbitrary disp

Operates on 64, to produce vector 6q, € N(J)

8q, =1, - Jo*(@) Jo(a) 1 3q,
The mapping by J, of 8q,, results in zero vector in R™o

Jo8q, = [Jy - Jy Jy*(q) Jo(q) ] 6g4 =0
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Generalized Inverse

* The generalized inverse of A (mXxn)is
A* (nxm) , such that

AA*A=A

Example:
2 30 2 -3 a
A=|1 2 0}, A= -1 2 b
0 0 O c d e

a, b, ¢, d, e can be any number. If they are all zero, this is
pseudo inverse (or Moore-Penrose Generalized Inverse)
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¢ Note that
A*A= | AA* = |

In previous example,

4 -9 0
A*A=AA*=|-1 4 0
0 0 0
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Inverse Kinematics of Velocity

Case l: my=n <6
J#*(q) =J1 (possible problem with singularity,
J-1 may not exist)

Case 2: m,>n, m,<6 (notinteresting/useful case,
task shall be < n)
overdetermined system: more eqns than unknowns.
J# = (JT J-1) JT = left pseudo inverse
= exists only if Rank J =n
Sol’n minimizes || J&q - 08X, ||,
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Inverse Kinematics of Velocity

Case 3: my,<n, m,<6 (Redundant Robots)
underdetermined system = less eqns than unknowns
J#=JT (J JT)1 = right pseudo inverse

= exists only if Rank J =m,
Sol’n minimizes || 8q ||,
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Resolved Motion Rate Control

— Kinematic Control without the need for solving the
inverse Kinematics of Position

— Need Joint level control which is available in robot
controllers

dq Ox
— Command joint motion such that desired e-e motion
is achieved
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Resolved Motion Rate Control

1) Given a Trajectory x(t) € R™ in task space
. f
i

initial final position
position

2) Divide Trajectory into small segments according to
sample time on reference Trajectory update rate

3) Atx,, compute J(q,)
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Resolved Motion Rate Control

4) Compute Ax, = X, — X, (position and orientation error)
5) Convert orientation error into 3 x 1 vector (dd)
6) Compute Aq =J*(qy) A xo . + [In - (@) Jo(aw)] Aqy

7) Command dq to robot controller
(Robot moves from q to qy;1) (89 = gy — )

8) Go to step 3 until x, reaches x;
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