CHAPTER 3

Rigid Body Motion and Robot Kinematics of Velocity

© Marcelo H. Ang Jr., Aug 06

Learning Objectives

- Relate time derivatives of position and orientation representations with translational and angular velocities.
- 2. Transform velocities in different spaces
- 3. Relate joint velocities with end-effector velocities
- 4. Understand robot singularities
- 5. Use velocity relationships to command motion of robots (resolved rate motion control)

Translational Velocities

 $^{\mathbf{A}}\mathbf{u_{B}} \in \Re^{3x1}$ = translational velocity of frame B (i.e., origin of frame B) relative of frame A

$${}^{\mathbf{A}}\mathbf{u}_{\mathbf{B}} = \frac{\mathrm{d}}{\mathrm{d}t}{}^{\mathbf{A}}\mathbf{p}_{\mathbf{B}} = \frac{\lim_{\Delta t \to 0} \frac{{}^{\mathbf{A}}\mathbf{p}_{\mathbf{B}}(t + \Delta t) - {}^{\mathbf{A}}\mathbf{p}_{\mathbf{B}}(t)}{\Delta t}$$

"frame of differentiation" is A

Velocity, like any vector may be expressed in another frame, say W $_{A}^{W}u_{B} = {}^{W}R_{A}^{A}u_{B}$

© Marcelo H. Ang Jr., Aug 06

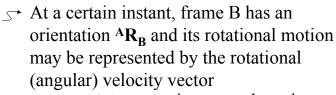
Translational Velocities

In general, velocity vector depends on 2 frames:

- frames of differentiation A leading subscript –
 this is the frame where the velocity of B is instantaneously computed from (can be thought of as velocity reference point)
- frame resulting vector is expressed in W leading superscript

When leading subscript is omitted, it is implied that the velocity is relative to some understood universal frame of reference.

A missing leading superscript implies a generic frame of expression.



$$^{\mathbf{A}}\mathbf{w_0} \in \Re^{3\mathrm{x}1}$$
 unit vector along $^{\mathbf{A}}\mathbf{w_B}$

$$= \text{instantaneous} = ^{\mathbf{A}}\mathbf{k_B}$$

$$= \text{axis of rotation}$$

$$= \text{speed of rotation}$$

{**A**}

Rotational Velocities

Let **Rot** (**k**, **d**
$$\theta$$
) = incremental change in rotation.
 ${}^{A}\mathbf{w}_{B} = {}^{A}\mathbf{k}_{B} \stackrel{\bullet}{\theta} = {}^{A}\mathbf{k}_{B} \stackrel{d\theta}{dt}$

$$\mathbf{A}_{\mathbf{W}_{\mathbf{B}}} = \mathbf{A}_{\mathbf{k}_{\mathbf{B}}} \dot{\mathbf{\theta}} = \mathbf{A}_{\mathbf{k}_{\mathbf{B}}} \frac{\mathrm{d}\mathbf{\theta}}{\mathrm{d}\mathbf{t}}$$

$$\therefore AR_B + \Delta AR_B = Rot(k, d\theta)AR_B$$

pre-multiplication since $d\theta$ k_B is expressed in the frame A (base)

Rot
$$(k, \theta) =$$

For a differential change (small) $d\theta$

$$\cos(\theta + d\theta) = \cos\theta + \frac{\delta\cos\theta}{\delta\theta}d\theta = \cos\theta + (-\sin\theta)d\theta$$

for $\theta = 0$, $d\theta$ small

$$cos(d\theta) \stackrel{?}{=} 1$$
 (approx)

$$\sin(\theta + d\theta) = \sin\theta + \frac{\delta\sin\theta}{\delta\theta}d\theta = \sin\theta + \cos\theta(d\theta)$$

© Marcelo H. Ang Jr., Aug 06

Rotational Velocities

for
$$\theta = 0$$
, $d\theta = small$

$$\sin(d\theta) = 0 + 1d\theta$$

$$\vec{=} d\theta$$
 (approx)

for
$$\theta = 0$$
, $d\theta = \text{small}$

$$\operatorname{vers}(d\theta) = 1 - \cos(d\theta) \stackrel{?}{=} 0 \text{ (approx)}$$

© Marcelo H. Ang Jr., Aug 06

$$\therefore \mathbf{Rot} (\mathbf{k}, \mathbf{d\theta}) = \begin{bmatrix} 1 & -k_z d\theta & k_y d\theta \\ k_z d\theta & 1 & -k_x d\theta \\ -k_y d\theta & k_x d\theta & 1 \end{bmatrix}$$

Back to:

$$\Delta^{A}R_{B} = \text{Rot}\left(\left.k, d\theta\right.\right)^{A}R_{B} - {}^{A}R_{B}$$

$$= \left[\text{Rot}\left(\left.k, d\theta\right.\right) - I\right]^{A}R_{B}$$

$$\Delta^{A}R_{B} = \begin{bmatrix} \phi & -k_{z}d\theta & k_{y}d\theta \\ k_{z}d\theta & \phi & -k_{x}d\theta \\ -k_{y}d\theta & k_{x}d\theta & \phi \end{bmatrix}^{A}R_{B}$$
© Marcelo H. Ang Jr., Aug 06

Rotational Velocities

dividing by dt:
$$\frac{d^{\mathbf{A}}\mathbf{R}_{\mathbf{B}}}{dt} = \begin{bmatrix} \phi & -k_{z}\frac{d\theta}{dt} & k_{y}\frac{d\theta}{dt} \\ k_{z}\frac{d\theta}{dt} & \phi & -k_{x}\frac{d\theta}{dt} \\ -k_{y}\frac{d\theta}{dt} & k_{x}\frac{d\theta}{dt} & \phi \end{bmatrix}^{\mathbf{A}}\mathbf{R}_{\mathbf{B}}$$

But
$${}^{\mathbf{A}}\mathbf{w}_{\mathbf{B}} = {}^{\mathbf{A}}\mathbf{k}_{\mathbf{B}} \dot{\boldsymbol{\theta}} = \begin{bmatrix} \mathbf{k}_{x} \\ \mathbf{k}_{y} \\ \mathbf{k}_{z} \end{bmatrix} \dot{\boldsymbol{\theta}} = \begin{bmatrix} {}^{\mathbf{A}}\mathbf{w}_{\mathbf{B}x} \\ {}^{\mathbf{A}}\mathbf{w}_{\mathbf{B}y} \\ {}^{\mathbf{A}}\mathbf{w}_{\mathbf{B}z} \end{bmatrix}$$

© Marcelo H. Ang Jr., Aug 06

$$\therefore {}^{\mathbf{A}} \mathbf{R}_{\mathbf{B}} = \begin{bmatrix} 0 & -{}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}_{\mathbf{Z}}} & {}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}_{\mathbf{Y}}} \\ {}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}_{\mathbf{Z}}} & 0 & -{}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}_{\mathbf{X}}} \\ -{}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}_{\mathbf{Y}}} & {}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}_{\mathbf{X}}} & 0 \end{bmatrix} {}^{\mathbf{A}} \mathbf{R}_{\mathbf{B}}$$

$$\text{Let this be } {}^{\mathbf{A}} \mathbf{W}_{\mathbf{B}} = \mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}} = \mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}} \mathbf{W}_{\mathbf{B}}$$

$$\mathbf{A} \mathbf{R}_{\mathbf{B}} = \mathbf{A} \mathbf{W}_{\mathbf{B}} \mathbf{A} \mathbf{R}_{\mathbf{B}}$$

© Marcelo H. Ang Jr., Aug 06

11

The Orthonormal (Rotation) Matrix & Skew Symmetric Matrices

Skew symmetric matrix as vector cross product:

Let
$$\mathbf{S} = \begin{bmatrix} 0 & -\mathbf{w}_z & \mathbf{w}_y \\ \mathbf{w}_z & 0 & -\mathbf{w}_x \\ -\mathbf{w}_y & \mathbf{w}_x & 0 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} \mathbf{w}_x \\ \mathbf{w}_y \\ \mathbf{w}_z \end{bmatrix}$

Then

$$\mathbf{S}\mathbf{p} = \mathbf{w} \times \mathbf{p}$$

where $\mathbf{p} \in \Re^{3x1}$ vector

© Marcelo H. Ang Jr., Aug 06

3 x 3 matrix version of 3 x 1 vector Cross product equivalent

Time derivative of Unit vectors
$$\dot{x} = \hat{w} \times x = \hat{w} \times x$$

$$\dot{y} = \hat{w} \times y = \hat{w} y$$

$$\dot{z} = \hat{w} \times y = \hat{w} y$$

$$\dot{z} = \hat{w} \times z = \hat{w} \times y = \hat{w} \times y$$

$$\dot{z} = \hat{w} \times z = \hat{w} \times z$$
O Marcelo H. Ang Jr., Aug 06

Orientation Error

- Angular velocity measure of instantaneous 3 x 1 orientation error
- Allows the relationship between

$$\Delta R \Leftrightarrow \Delta \Phi$$

$$\Delta R = \int \omega$$

$$\Delta R = \int \dot{R}$$

$$\dot{R} = \hat{\omega} R \rightarrow (\dot{x} \quad \dot{y} \quad \dot{z}) = \hat{\omega} (x \quad y \quad z)$$

As with any vector, the rotational velocity vector ${}^{\mathbf{A}}\mathbf{w}_{\mathbf{R}}$ may be expressed in another frame C:

$${}^{C}_{A}\mathbf{w}_{B} = {}^{C}\mathbf{R}_{A} {}^{A}\mathbf{w}_{B}$$

leading subscript A: frame the body is rotating relative to (frame & differentiation)

leading superscript C: frame of Expression

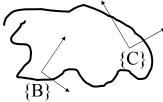
© Marcelo H. Ang Jr., Aug 06

15

Rotational Velocities

The equivalent matrix product representation is:

$$_{A}^{C}\dot{W}_{B} = {}^{C}\mathbf{R}_{A}^{A}\mathbf{W}_{B}^{A}\mathbf{R}_{C}$$



 $\{B\}$ & $\{C\}$ are attached to the same rigid body which is rotating

$$^{A}R_{C} = {}^{A}R_{B} {}^{B}R_{C}$$

© Marcelo H. Ang Jr., Aug 06

$$\stackrel{\bullet}{\wedge} \qquad \stackrel{\wedge}{\wedge} \qquad \stackrel{\wedge$$

⇒ rotational velocity of rigid body is equal to rot. velocity of any frame attached to the rigid body.

© Marcelo H. Ang Jr., Aug 06

17

The Orthonormal (Rotation) Matrix & Skew Symmetric Matrices

$$\mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{I}$$

$$\mathbf{R}\mathbf{\dot{R}}^{\mathrm{T}} + \mathbf{\dot{R}}\mathbf{R}^{\mathrm{T}} = 0$$

$$(\mathbf{\dot{R}R^T})^{\mathrm{T}} + \mathbf{\dot{R}R^T} = 0$$

Define
$$S = RR^T = W$$

Then
$$S + S^T = 0$$

S = a skew symmetric matrix

© Marcelo H. Ang Jr., Aug 06

Roll Pitch Yaw Rates & Angular Velocities

 $^{A}R_{R} = Rot(z, \phi) Rot(y, \theta) Rot(x, \phi)$

$$\mathbf{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \dot{\boldsymbol{\phi}} + \operatorname{Rot}(\mathbf{z}, \boldsymbol{\phi}) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \dot{\boldsymbol{\theta}} + \operatorname{Rot}(\mathbf{z}, \boldsymbol{\phi}) \operatorname{Rot}(\mathbf{y}, \boldsymbol{\theta}) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \dot{\boldsymbol{\phi}}$$

$$\mathbf{W} = \begin{pmatrix} 0 & -\sin\phi & \cos\phi\cos\theta \\ 0 & \cos\phi & \sin\phi\cos\theta \\ 1 & 0 & -\sin\theta \end{pmatrix} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\phi} \end{pmatrix} \qquad \mathbf{W} = \mathbf{E_r}^{-1} \, \dot{\mathbf{x}_r} \\ \mathbf{w} = \mathbf{E_r} \, \mathbf{w}$$

© Marcelo H. Ang Jr., Aug 06 $E_r^{-1}_{RPY}$

Roll Pitch Yaw Ratio & Angular Velocities

$$\dot{\mathbf{x}}_{r} = \begin{pmatrix} \frac{\cos\phi \sin\phi}{\cos\theta} & \frac{\sin^{2}\phi}{\cos\theta} & 1\\ -\sin\phi & \cos\phi & 0\\ \frac{\cos\phi}{\cos\theta} & \frac{\sin\phi}{\cos\theta} & 0 \end{pmatrix} \mathbf{w}$$

If $\cos\theta = 0$, matrix does not exist

→ Math. Singularity

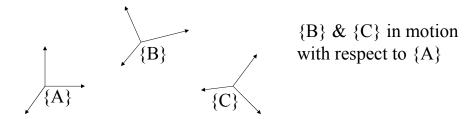
 $\mathbf{w} \rightarrow \mathbf{\dot{x}}_r$ not always possible

Not all possible angular matrix can be represented This is a problem with 3 parameter representations for

© Macric ntation Nug 06

Simultaneous Rotational & Translational Velocities

Given: Frames A, B & C



Find: Relationships between velocities ${}^{A}\mathbf{p}_{C} = {}^{A}\mathbf{p}_{B} + {}^{A}\mathbf{R}_{B} {}^{B}\mathbf{p}_{C}$

© Marcelo H. Ang Jr., Aug 06

21

Simultaneous Rotational & Translational Velocities

Differentiating
$${}^{A}U_{C} = {}^{A}U_{B} + {}^{A}R_{B} {}^{B}U_{C} + {}^{A}R_{B} {}^{B}p_{C}$$

→ Contribution of rotational velocity of frame B to the translational velocity of C =

$$A\dot{R}_{B}^{B}p_{C} = \lfloor A_{W_{B}X} \rfloor AR_{B}^{B}p_{C} = A_{W_{B}X} (AR_{B}^{B}p_{C})$$

$$= -AR_{B}^{B}p_{C} \times A_{W_{B}}$$

$$= -AW_{B} \times (A_{D_{C}} - A_{D_{B}})$$

$$\therefore AU_{C} = AU_{B} + AR_{B}^{B}U_{C} + AW_{B} \times (A_{B}^{B}p_{C})$$

$$= -AU_{B} + AR_{B}^{B}U_{C} + AW_{B} \times (A_{D_{C}} - A_{D_{B}})$$

© Marcelo H. Ang Jr., Aug 06

Simultaneous Rotational & **Translational Velocities**

$${}^{A}R_{C} = {}^{A}R_{B} {}^{B}R_{C}$$

$${}^{A}\mathring{R}_{C} = {}^{A}\mathring{R}_{B} {}^{B}R_{C} + {}^{A}R_{B} {}^{B}\mathring{R}_{C}$$

$${}^{A}W_{C} {}^{A}R_{C} = {}^{A}W_{B} {}^{A}R_{B} {}^{B}R_{C} + {}^{A}R_{B} {}^{B}W_{C} {}^{B}R_{C}$$

$$= {}^{A}W_{B} {}^{A}R_{C} + {}^{A}R_{B} {}^{B}W_{C} {}^{B}R_{A} {}^{A}R_{C}$$

$${}^{A}W_{C} {}^{A}R_{C} = {}^{A}W_{B} {}^{A}R_{C} + {}^{A}R_{B} {}^{B}W_{C} {}^{B}R_{A} {}^{A}R_{C}$$

$${}^{A}W_{C} {}^{A}R_{C} = {}^{A}W_{B} + {}^{A}R_{B} {}^{B}W_{C} {}^{B}R_{A} {}^{A}R_{C}$$

$${}^{A}W_{C} = {}^{A}W_{B} + {}^{A}R_{B} {}^{B}W_{C} {}^{B}R_{A}$$

$${}^{B}W_{C} {}^{B}R_{A} {}^{A}R_{C}$$

$${}^{A}W_{C} = {}^{A}W_{B} + {}^{A}R_{B} {}^{B}W_{C} {}^{B}R_{A}$$

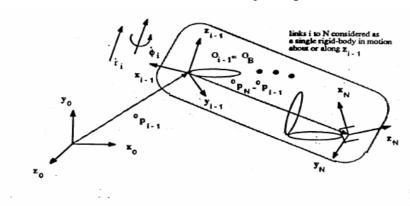
$${}^{B}W_{C} {}^{B}R_{A} {}^{A}R_{C}$$

23

Simultaneous Rotational & **Translational Velocities**

Computation Of End-Effector Velocity

(6x1)
$$\mathbf{v}_{N} = \begin{pmatrix} \mathbf{u}_{N} \\ \mathbf{w}_{N} \end{pmatrix} = \mathbf{f} \left(\mathbf{q}, \mathring{\mathbf{q}} \right)$$
 joint position joint velocities



Computation Of End-Effector Velocity

Let us examine the contribution of the ith joint motion to end-effector velocity. We set all other joint velocities ϕ :

$$\dot{\mathbf{q}}_{C} \neq 0$$
 $\dot{\mathbf{q}}_{1} = \dot{\mathbf{q}}_{2} = \dots = \dot{\mathbf{q}}_{i-1} = \dot{\mathbf{q}}_{i+1} = \dots \dot{\mathbf{q}}_{N} = \phi$ so motion is occurring with respect to \mathbf{z}_{i-1} axis For joint i rotational

$$\begin{split} \mathbf{w_{i}} &= \mathbf{z_{i-1}} \ \boldsymbol{\dot{q}_{i}} \\ \mathbf{u_{i}} &= \mathbf{w_{i}} \ \mathbf{x} \ \mathbf{R_{i-1}}^{\text{i-1}} \mathbf{p_{N}} = \mathbf{z_{i-1}} \ \boldsymbol{\dot{q}_{i}} \ \mathbf{x} \ (\ \mathbf{p_{N}} - \mathbf{p_{i-1}} \) \\ &= \mathbf{z_{i-1}} \ \mathbf{x} \ (\ \mathbf{p_{N}} - \mathbf{p_{i-1}} \) \ \boldsymbol{\dot{q}_{i}} \end{split}$$

Note that o_{i-1} has no translational velocity

origin of frame i-1 w/c contains z_{i-1} © Marcelo H. Ang Jr., Aug 06 since joint is rotational

26

Computation Of End-Effector Velocity

For a translational joint i,

$$\mathbf{w_i} = 0$$
$$\mathbf{u_i} = \mathbf{z_{i-1}} \ \mathbf{\dot{q}_i}$$

The total velocity of the end-effector during coordinated motion is the superposition of all the elementary velocities that represent single joint motion:

$$\mathbf{v}_{\mathbf{N}} = \begin{bmatrix} \mathbf{u}_{\mathbf{N}} \\ \mathbf{w}_{\mathbf{N}} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} \mathbf{u}_{i} \\ \sum_{i=1}^{N} \mathbf{w}_{i} \end{bmatrix}$$

© Marcelo H. Ang Jr., Aug 06

27

Computation Of End-Effector Velocity

$$\mathbf{v_{N}} = (\begin{array}{cccc} \mathbf{f}_{1} & \mathbf{J}_{2} & \mathbf{J}_{3} & \dots & \mathbf{J}_{N} \end{array}) \begin{pmatrix} \mathbf{\mathring{q}}_{1} \\ \mathbf{\mathring{q}}_{2} \\ \mathbf{\mathring{q}}_{N} \end{pmatrix}$$

$$6xN J(q) \begin{pmatrix} \mathbf{\mathring{q}}_{1} \\ \mathbf{\mathring{q}}_{N} \end{pmatrix}$$

Column J_i represents motion contribution of joint i

$$J(q) = Jacobian matrix$$

Cartesian \leftrightarrow joint space

© Marcelo H. Ang Jr., Aug 06

Computation Of End-Effector Velocity

For a translational joint i

$$\mathbf{J_i} = \begin{bmatrix} \mathbf{Z_{i-1}} \\ \mathbf{0} \end{bmatrix}$$

For a rotational joint i

$$\mathbf{J}_{i} = \begin{bmatrix} z_{i-1} \times (p_{N} - p_{i-1}) \\ z_{i-1} \end{bmatrix}$$

© Marcelo H. Ang Jr., Aug 06

29

Jacobian Transformations

· Velocities expressed in different frames

$$^{\mathbf{A}}\mathbf{v_{N}} \leftrightarrow ^{\mathbf{B}}\mathbf{v_{N}}$$

$$\begin{cases}
N = \text{End Effector} \\
B = \text{may be a link coord} \\
\text{frame that is held} \\
\text{instantaneously constant}
\end{cases}$$

For ${}^{A}R_{B}$ and ${}^{A}p_{B}$ constants

$${}^{\mathbf{A}}\mathbf{v}_{\mathbf{N}} = \begin{pmatrix} {}^{\mathbf{A}}\mathbf{u}_{\mathbf{N}} \\ {}^{\mathbf{A}}\mathbf{w}_{\mathbf{N}} \end{pmatrix} = \underbrace{\begin{bmatrix} {}^{\mathbf{A}}\mathbf{R}_{\mathbf{B}} & 0 \\ 0 & {}^{\mathbf{A}}\mathbf{R}_{\mathbf{B}} \end{bmatrix} \begin{pmatrix} {}^{\mathbf{B}}\mathbf{u}_{\mathbf{N}} \\ {}^{\mathbf{B}}\mathbf{w}_{\mathbf{N}} \end{pmatrix}}_{\mathbf{B}\mathbf{v}_{\mathbf{N}}}$$

© Marcelo H. Ang Jr., Aug 06

Jacobian Transformations

• Diff pts on End-Effector

For ${}^B R_N$ and ${}^B p_N$ constants

B & N are attached to a <u>rigid body</u> moving

© Marcelo H. Ang Jr., Aug 06

31

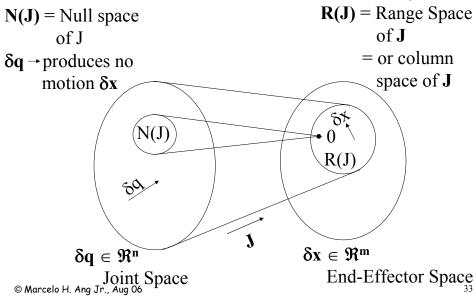
Jacobian Transformations

$${}^{A}\mathbf{u}_{N} = {}^{A}\mathbf{u}_{B} + {}^{A}\mathbf{w}_{B}X ({}^{A}\mathbf{p}_{N} - {}^{A}\mathbf{p}_{B})$$

$${}^{A}\mathbf{w}_{N} = {}^{A}\mathbf{w}_{B}$$

$${}^{A}\mathbf{v}_{N} = \begin{pmatrix} {}^{A}\mathbf{u}_{N} \\ {}^{A}\mathbf{w}_{N} \end{pmatrix} = \underbrace{\begin{bmatrix} \mathbf{I} & -({}^{A}\mathbf{p}_{N} - {}^{A}\mathbf{p}_{B} \\ 0 & \mathbf{I} \end{bmatrix}}_{\text{another } \mathbf{J}$$

Robot Kinematics of Velocity



Inverse Kinematics of Velocity

Solution to
$$\delta \mathbf{x} = \mathbf{J} \delta \mathbf{q}$$
 [i.e., given $\delta \mathbf{x}$, Find $\delta \mathbf{q}$]

 $\begin{array}{c} & \checkmark \\ & \times \\ & \text{mx1} \end{array}$

Exists if & only if

 $\begin{array}{c} \text{Park } \mathbf{J} = \text{Park } (\mathbf{J} + \mathbf{S} \mathbf{x}) \end{array}$

Rank
$$\mathbf{J} = \text{Rank} (\mathbf{J} \mid \delta \mathbf{x})$$

m x n m x (n + 1) matrix obtained by augmenting \mathbf{J} with column $\delta \mathbf{x}$

Meaning δx must be in the subspace spanned by the columns of J

Inverse Kinematics of Velocity

First: Convert δx to $\delta x_0 \in \mathbf{R}^{\mathbf{m}_0}$ (velocity, basic kinematic model)

$$\begin{aligned} \delta \mathbf{x_0} &= \mathbf{J_0} \ \mathbf{c} \\ \mathbf{V_N} &= \mathbf{J_0} \ \mathbf{\dot{q}} \) \\ \mathbf{R^{m_0}} & \mathbf{R^n} \end{aligned}$$

Solution exists if & only if Rank $J_0 = min(m_0, n)$

i.e., columns of J_0 span the space $R^{min(\,m_0,n\,)}$

© Marcelo H. Ang Jr., Aug 06

35

Inverse Kinematics of Velocity

General Solution:

generalized Inverse
$$\delta \mathbf{q} = \mathbf{J_0}^\#(\mathbf{q}) \ \delta \mathbf{x_0} + \left[\mathbf{I_n} - \mathbf{J_0}^\#(\mathbf{q}) \ \mathbf{J_0}(\mathbf{q}) \ \right] \ \delta \mathbf{q_0}$$

$$\text{nxn Identity}$$
any arbitrary disp

Operates on δq_0 to produce vector $\delta q_n \in N(J)$ $\delta q_n = [I_n - J_0^{\#}(q) J_0(q)] \delta q_0$

The mapping by J_0 of δq_n results in zero vector in $\mathbf{R}^{\mathbf{m}_0}$ $J_0 \delta q_n = [J_0 - J_0 J_0^{\#}(\mathbf{q}) J_0(\mathbf{q})] \delta q_0 = 0$

© Marcelo H. Ang Jr., Aug 06

Generalized Inverse

• The generalized inverse of A $(m \times n)$ is A* $(n \times m)$, such that

$$AA * A = A$$

Example:

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad A^* = \begin{pmatrix} 2 & -3 & a \\ -1 & 2 & b \\ c & d & e \end{pmatrix}$$

a, b, c, d, e can be any number. If they are all zero, this is pseudo inverse (or Moore-Penrose Generalized Inverse)

© Marcelo H. Ang Jr., Aug 06

37

Note that

$$A * A \neq I$$
 $AA* \neq I$

In previous example,

$$A * A = AA* = \begin{pmatrix} 4 & -9 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

© Marcelo H. Ang Jr., Aug 06

Inverse Kinematics of Velocity

Case 1: $m_0 = n \le 6$ $J^{\#}(\mathbf{q}) = J^{-1}$ (possible problem with singularity, J^{-1} may not exist)

Case 2: $m_0 > n$, $m_0 \le 6$ (not interesting/useful case, task shall be $\le n$) overdetermined system: more eqns than unknowns. $\mathbf{J}^{\#} = (\mathbf{J}^T \ \mathbf{J}^{-1}) \ \mathbf{J}^T = \text{left pseudo inverse}$ = exists only if Rank $\mathbf{J} = n$ Sol'n minimizes $\| \mathbf{J} \delta \mathbf{q} - \delta \mathbf{x_0} \|_2$

© Marcelo H. Ang Jr., Aug 06

39

Inverse Kinematics of Velocity

Case 3: $m_0 < n$, $m_0 \le 6$ (Redundant Robots) underdetermined system = less eqns than unknowns $\mathbf{J}^{\#} = \mathbf{J}^{\mathbf{T}} (\mathbf{J} \mathbf{J}^{\mathbf{T}})^{-1} = \text{right pseudo inverse}$ = exists only if Rank $\mathbf{J} = m_0$ Sol'n minimizes $\| \delta \mathbf{q} \|_2$

Resolved Motion Rate Control

- Kinematic Control without the need for solving the inverse Kinematics of Position
- Need Joint level control which is available in robot controllers
- oq ox
 Command joint motion such that desired e-e motion is achieved

© Marcelo H. Ang Jr., Aug 06

41

Resolved Motion Rate Control

1) Given a Trajectory $x(t) \in R^m$ in task space

- 2) Divide Trajectory into small segments according to sample time on reference Trajectory update rate
- 3) At x_k , compute $J(q_k)$

© Marcelo H. Ang Jr., Aug 06

Resolved Motion Rate Control

- 4) Compute $\Delta x_k = x_{k+1} x_k$ (position and orientation error)
- 5) Convert orientation error into 3 x 1 vector ($d\Phi$)
- 6) Compute $\Delta q = J^{\#}(q_k) \Delta x_{0,k} + [In J_0^{\#}(q^k) J_0(q_k)] \Delta q_0$
- 7) Command δq to robot controller (Robot moves from q_k to q_{k+1}) ($\delta q = q_{k+1} q_k$)
- 8) Go to step 3 until \boldsymbol{x}_k reaches \boldsymbol{x}_f

© Marcelo H. Ang Jr., Aug 06